Write your analytics code once, run it everywhere.

Try Ibis now »

Ibis provides a standard way to write analytics code, that then can be run in multiple engines.

Main features

Supported engines


The next example is all the code you need to connect to a database with a countries database, and compute the number of citizens per squared kilometer in Asia:

import ibis

db = ibis.sqlite.connect('geonames.db')

countries = geonames_db.table('countries')

asian_countries = countries[countries['continent'] == 'AS']

density_in_asia = asian_countries['population'].sum() / asian_countries['area_km2'].sum()


Comparison to other tools

Why not use pandas?

pandas is great for many use cases. But pandas loads the data into the memory of the local host, and performs the computations on it.

Ibis instead, leaves the data in its storage, and performs the computations there. This means that even if your data is distributed, or it requires GPU accelarated speed, Ibis code will be able to benefit from your storage capabilities.

Why not use SQL?

SQL is widely used and very convenient when writing simple queries. But as the complexity of operations grow, SQL can become very difficult to deal with.

With Ibis, you can take fully advantage of software engineering techniques to keep your code readable and maintainable, while writing very complex analitics code.

Why not use SQLAlchemy?

SQLAlchemy is very convenient as an ORM (Object Relational Mapper), providing a Python interface to SQL databases. But SQLAlchemy is focussed on access to the data, and not to perform analytics on it. And it is mostly limited to conventional SQL databases, and doesn't support big data platforms or specialized analytical tools.